GABA_A Receptor Expression in the Forebrain of Ataxic Rolling Nagoya Mice

Elsebet Østergaard Nielsen¹ and Simon Kaja^{1,2,4,*}

¹NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark
²School of Biological and Biomedical Sciences, Durham University, South Road, Science Laboratories, Durham DH1 3LE, United Kingdom
³Vision Research Center, Department of Ophthalmology University of Missouri, Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
⁴K&P Scientific LLC, 8570 N Hickory St. Ste. 412, Kansas City, MO 64155, USA

Abstract

The human CACNA1A gene encodes the pore-forming α subunit of Ca_{2.1} (P/Q-type) calcium channels and is the locus for several neurological disorders, including episodic ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6), and Familial Hemiplegic Migraine type 1 (FHM1). Several spontaneous mouse Cacna1a mutant strains exist, among them Rolling Nagoya (tg^{rol}), carrying the R1262G point mutation in the mouse Cacna1a gene. tg^{rol} mice display a phenotype of severe gait ataxia and motor dysfunction of the hind limbs. At the functional level, the R1262G mutation results in a positive shift of the activation voltage of the Ca_{2.1} channel and reduced current density. γ-Aminobutyric acid type A (GABA_A) receptor subunit expression depends critically on neuronal calcium influx, and GABA_A receptor dysfunction has previously been described for the cerebellum of tg^{rol} and other ataxic Cacna1a mutant mice. Given the expression pattern of Ca_{2.1}, it was hypothesized that calcium dysregulation in tg^{rol} might affect GABA_A receptor expression in the forebrain. Herein, functional GABA_A receptors in the forebrain of tg^{rol} mice were quantified and pharmacologically dissociated using [H] radioligand binding. No gross changes to functional GABA_A receptors were identified. Future cell-type specific analyses are required to identify possible cortical contributions to the psychomotor phenotype of tg^{rol} mice.

Keywords: Gamma aminobutyric receptor type A; Calcium; Ataxia; Pharmacology; Motor dysfunction; Rolling Nagoya; Cacna1a; Ca_{2.1}; P/Q-type calcium channel

Introduction

The human CACNA1A gene encodes the α1 subunit of neuronal voltage-gated Ca_{2.1} (P/Q-type) calcium channels. Furthermore, CACNA1A is the locus of several genetic neurological diseases, including Episodic Ataxia type 2 (EA2), spinocerebellar ataxia type 6 (SCA6), familial hemiplegic migraine type 1 (FHM1) and rare forms of epilepsy [1-4].

Multiple mouse strains exist that carry mutations in the orthologous mouse Cacna1a gene, including Rolling Nagoya (tg^{rol}), Tottering (tg) and Leaner (tg^l); these strains arose spontaneously and exhibit phenotypes of cerebellar ataxia often paired with absence epilepsy and/or other motor phenotypes such as dyskinesia and dystonia [5-7]. Transgenic knock-in (KI) mouse models have been generated to harbor the human FHM1 missense mutations R192Q and S218L in the Cacna1a gene [8,9].

The tg^{rol} mouse carries the R1262G mutation that results in a phenotype of pure cerebellar ataxia [6,10]. At the functional level, the mutation results in a loss-of-function phenotype with Ca_{2.1} channels exhibiting a positive shift of the activation voltage and reduced current density both in recombinant expression systems and primary culture cerebellar Purkinje cells from tg^{rol} mice [11]. A similar loss-of-function synaptic phenotype was reported for the neuromuscular junction [12].

Numerous studies have investigated anatomy and morphology of the tg^{rol} brain and expression and distribution of neurotransmitter receptors in the tg^{rol} nervous system [10]. However, there is still a controversy regarding the presence and/or extent of cerebellar morphological abnormalities as well as the contribution of striatal dysfunction to the ataxic phenotype of tg^{rol} [13,14].

The rationale for the present study is based on the functional link between neuronal Ca²⁺ influx and GABA_A receptor subunit expression [15-19]. In the cerebellum, the loss of GABAergic inhibition may decrease tonic inhibition in cerebellar granule cells (CGCs), leading to ataxia in Angelman syndrome [20]. Similarly, an aberrant GABA_A receptor complement may contribute to the ataxic phenotype of tg^{rol} mice [21-23].

Given the abundant expression of Ca_{2.1} channels in the cerebrum, it was hypothesized that functional GABA_A receptor subunit expression may be altered in the forebrain of tg^{rol} mice. Functional GABA_A receptors in the forebrain of tg^{rol} were subsequently quantified and pharmacologically dissociated using [H] radioligand binding.

Materials and Methods

Tissue

Tissue from Rolling Nagoya mice was kindly provided by Drs. Jaap Plomp and Arn van den Maagdenberg (Leiden University Medical Center, Leiden, The Netherlands).

[3H] Radioligand binding assays

[3H] Radioligand binding was essentially performed as described previously [23]. Mice were euthanized by cervical dislocation and forebrain (without olfactory bulb) and cerebellum were dissected into 0.1 M ice-cold phosphate buffered saline (pH 7. r [3H] muscimol binding, 50 mM Tr 4) and snap frozen in liquid nitrogen. Tissue was...
thawed on ice in 50 volumes assay buffer (50 mM Tris-citrate pH 7.3 for [3H] muscimol binding, 50 mM Tris-HCl pH 7.4 for [3H] Ro15-4513 and [3H] Ro15-1788 binding). Samples were homogenized in a Dounce tissue grinder and centrifuged at 750×g for 30 min at 4°C. Supernatants were subsequently centrifuged at 45,000×g for 30 min, the pellet was washed in 50 volumes assay buffer and re-homogenized. In order to release endogenous neurotransmitter, tissue was incubated for 30 min in 37°C water bath and re-centrifuged. The pellet was then resuspended in 50 volumes assay buffer, flash frozen in liquid nitrogen and stored overnight at -20°C. Immediately prior to experiments, tissue was thawed in a waterbath at ambient temperature, centrifuged and the pellet resuspended 200-fold for [3H] muscimol experiments and 500-fold for [3H] Ro15-4513 and [3H] Ro15-1788 binding. Protein concentrations of membrane preparations were determined by the method of Lowry [24] employing bovine serum albumin as the standard protein for calibration.

Data analysis and statistics

Data throughout this manuscript is presented as mean ± s.e.m. Data was analyzed in SigmaPlot v10 (Systat Software, Inc., San Jose, CA) using the one-binding site regression tool with 200 iterations. Overall B$_{max}$ and K$_D$ values were obtained by calculating the mean values obtained from each individual animal. Rosenthal transformations were performed on radioligand binding data and plotted as Scatchard plots for illustration purposes only [23,25,26]. Statistically significant differences were tested for using Student’s t-tests, as appropriate. Statistical significance was defined as P<0.05.

Results

[3H] Muscimol binding

In order to determine the total number of functional GABA binding sites expressed on forebrain membranes, [3H] muscimol binding was performed. Fitting the binding curve using a single binding-site equation revealed no statistically significant difference between the B$_{max}$ of wt and tg$_{rol}$ mice (n=4, P=0.70) (Figures 1A and C). Rosenthal transformations of the data are presented as Scatchard plot for illustration (Figure 1B). The K$_D$ values for [3H] muscimol binding were similar between genotypes (n=4, P=0.73) (Figure 1D).

[3H] Ro15-4513 and [3H] flumazenil binding

Next, benzodiazepine receptor binding, identifying γ$_2$ subunit-containing GABA receptors, was quantified using [3H] Ro15-4513 and [3H] flumazenil. Total [3H] Ro15-4513 binding was similar between wt and tg$_{rol}$ forebrain membranes (n=4, P=0.56) (Figures 2A-C). Binding affinity, expressed as KD, was not statistically significantly different between genotypes (n=4, P=0.10) (Figure 2D). In order to address the possibility of subunit changes, benzodiazepine-insensitive (BZ-IS) and benzodiazepine-sensitive (BZ-S) binding sites were differentiated pharmacologically (Figures 2E-H). BZ-IS binding was quantified in the presence of 10 µM flunitrazepam (Figure 2E). B$_{max}$ and K$_D$ values did not differ between wt and tg$_{rol}$ (n=4, P=0.92) (Figures 2G and H). Subsequently, BZ-S binding could be calculated mathematically by subtracting BZ-IS binding from total binding (Figure 2F).

Lastly, [3H] flumazenil (Ro15-1788) binding to forebrain...
membranes was quantified. No differences in B_{max} ($n=4$, $P=0.95$) and KD ($n=4$, $p=0.20$) were identified (Figures 3A-D).

Discussion

In this study, GABA$_A$ receptor binding sites in the cerebrum of wt and tg^{rol} mice were quantified by $[^3H]$ ligand binding. We utilized highly selective, well-established GABA$_A$ receptor ligands to investigate GABA$_A$ receptor pharmacology in forebrain membranes of the Cacna1a mutant tg^{rol} mice and results in a positive shift of the activation voltage of the channel and overall reduced Ca$^2+$ signaling leading to normal Ca$^2+$ influx. Unfortunately, there is no data available to date to support or reject this hypothesis. At the neuromuscular junction, where Ca$_{2.1}$ channels are the exclusive mediators of acetylcholine release, no compensatory Ca$^2+$ channel expression was found [23]. 2) Region and/or cell type-specific changes may be occluded when quantifying binding to membrane preparations. Future studies employing autoradiography are needed to confirm our results presented herein. 3) Effects of Cacna1a mutations are dependent critically on the specific splice isoform of the Ca$_{2.1}$ channel. For instance, FHMI mutations in Cacna1a exhibit greater hyperpolarizing shifts in voltage-dependence when expressed in the short (Ca$_{V2.1\Delta 47}$) versus the long C-terminal variant (Ca$_{V2.1+47}$) [34]. Cerebellar splice variants may be more susceptible to the effects of the tg^{rol} mutation and results in disruption of Ca$^2+$ signaling and thus cause the ensuing cerebellar GABA$_A$ receptor dysfunction in tg^{rol} mice [21].

In conclusion, we did not identify any gross changes in GABA$_A$ receptor pharmacology and expression in the forebrain of tg^{rol} mice. Future cell type-specific analyses are required to confirm cortical contributions to the psychomotor phenotype of tg^{rol} mice.

![Figure 2: $[^3H]$ Ro15-4513 binding.](image-url)
Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number GM102631. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Dr. Jaap Plomp (Leiden University Medical Center, Leiden, The Netherlands) for sharing his expertise on Rolling Nagoya mice and calcium channel biophysics. This work is dedicated to the memory of the late Christopher L. Thompson, Ph.D. (1960-2007), a passionate scientist, inspiring mentor and wonderful friend, who introduced the senior author to the field of GABA_A receptors.

References

Figure 3: [3H] Flumazenil (Ro15-1788) binding. (A) [3H] Flumazenil binding did not reveal any quantitative differences between binding to wt and tg^{rol} forebrain membrane homogenates. (B) Scatchard plot is shown for illustration. (C-D) B_{max} and K_D values did not differ between wt and tg^{rol} mice.