EDITORIAL

Pancreatic Hyperenzymemia: Clinical Significance and Diagnostic Approach

Luca Frulloni, Franca Patrizi, Laura Bernardoni, Giorgio Cavallini

Department of Surgical and Gastroenterological Sciences, University of Verona. Verona, Italy

Introduction

An increase in the serum concentration of pancreatic enzymes (amylase and lipase) is commonly an expression of inflammatory or neoplastic pancreatic disease. However, an elevation of pancreatic enzymes, generally mild, may be a non-specific phenomenon without any clinical implication. The large spreading of the serum pancreatic enzymes dosage in clinical practice, particularly in emergency rooms, results in a large number of patients with elevated amylase and/or lipase serum levels without clinical evidence of pancreatic disease [1, 2]. This generally involves an ever-increasing number of instrumental and biochemical investigations to exclude pancreatic disorders, with a waste of resources from a cost-effective point of view. This review emphasizes the biological mechanisms behind these serological alterations, the possible causes, the clinical implications and the diagnostic approach.

The Mechanism Underlying Pancreatic Hyperenzymemia

The causes of increased levels of serum pancreatic enzymes may be related to pancreatic disease. In the absence of pathologies of the pancreas, the mechanism for this biochemical alteration is still unclear, even if some hypotheses have been postulated.
fold greater than in other tissues [13, 14]. More than 99% of pancreatic lipase is excreted from the apical poles of the acinar cells into the ductal system of the gland, whereas less than 1% diffuses from the basilar pole of the acinar cells into the lymphatics and capillaries (the exogenous-endogenous partition) and subsequently reaches the general circulation [12]. Independent of their origins, about 25% of serum amylase and lipase are excreted by the kidney [12, 15], but amylase is partially reabsorbed by the renal tubular system [12, 16], whereas the reabsorption of lipase is almost complete [17]. It is thought that circulating pancreatic enzymes are removed by the reticulo-endothelial system in the body, and the liver is suspected to be a major organ for amylase removal [18, 19].

Increased levels of pancreatic enzymes may be secondary to an imbalance between pancreatic release and renal clearance [20], but liver damage is also suspected to play a role in inducing pancreatic hyperenzymemia [21]. The elevation of serum pancreatic enzymes may be secondary to an increased release of pancreatic enzymes from the pancreas in inflammatory or neoplastic disease of the pancreas [22]. The pathological mechanism is probably related to a disruption of pancreatic acini or to an alteration of the normal exocytosis process, with the secretion of the zymogen contents at the basolateral side of the acinar cells [23]. The pancreatic enzymes are therefore released into the interstitial space and later reabsorbed directly or via the lymphatics into the bloodstream.

In the absence of pancreatic disease, the possible causes of an increased enzyme release from the pancreas are an obstruction of the pancreatic duct system, generally mild, or direct acinar cell damage, both of which alter the normal exocytosis process in the acinar cells (Figure 1). There is evidence that an obstructive mechanism in the pancreatic ductal system may determine a disturbance of the normal exocytosis process in pancreatic acinar cells [6] which leads to a basolateral migration of the zymogens and a subsequent discharge of the pancreatic pro-enzymes into the interstitial space (leakage phenomenon) [24]. This mechanism has been demonstrated experimentally, and postulated for the

<table>
<thead>
<tr>
<th>Release of Pancreatic Enzymes into the Blood</th>
<th>Renal Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild duct obstruction</td>
<td>Acinar cells damage</td>
</tr>
<tr>
<td>Biliary causes</td>
<td>Biliary lithiasis</td>
</tr>
<tr>
<td></td>
<td>Sphincter of Oddi dysfunction (SOD)</td>
</tr>
<tr>
<td></td>
<td>Pancreatic duct tumors</td>
</tr>
<tr>
<td></td>
<td>Anatomic anomalies</td>
</tr>
<tr>
<td></td>
<td>Choledochocele</td>
</tr>
<tr>
<td>Pancreatic causes</td>
<td>Autoimmunity</td>
</tr>
<tr>
<td></td>
<td>Pancreatic Tumours</td>
</tr>
<tr>
<td></td>
<td>Anatomic Anomalies</td>
</tr>
<tr>
<td></td>
<td>Gene mutations (?)</td>
</tr>
<tr>
<td></td>
<td>Santorinicle</td>
</tr>
<tr>
<td>Duodenal causes</td>
<td>Paravaterian diverticulum</td>
</tr>
<tr>
<td></td>
<td>Periampullar tumours</td>
</tr>
</tbody>
</table>

Figure 1. Pathogenetic mechanisms and possible causes for increased serum levels of pancreatic enzymes.
hyperenzymemia following endoscopic maneuvers on the papilla of Vater [25]. Experimentally, pancreatic duct obstruction determines rapid changes in the response of the acinar cells to secretory stimuli (acetylcholine and cholecystokinin) and leads to complex pathological alterations in the intracellular Ca²⁺-signaling pattern inducing premature digestive enzyme activation [6]. Anatomic alterations of the pancreaticobiliary junction are rare anomalies which cause various pathological conditions in the biliary tract and the pancreas, and may be associated with serum pancreatic hyperenzymemia [26]. Pancreaticobiliary maljunction might induce pancreatitis or an increase in serum pancreatic enzymes by inducing an obstruction in Wirsung’s duct or by determining bile reflux into the pancreatic duct via the anomalous connection [26]. The pathogenesis of serum pancreatic enzyme elevations in metabolic disorders (diabetic ketoacidosis, acidemia) remains unclear. It has been postulated that it results from direct injury to the pancreas with enzyme leakage from the acini and decreased renal clearance [27, 28], but other Authors have suggested a possible role of acidosis in the pancreatic and extrapancreatic secretion of amylase and lipase [29]. Hyperamylasemia may be associated with lung and ovarian cancer [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. It has been suggested that the cause may be an ectopic production of pancreatic enzymes by the tumors, but some Authors have also postulated that the tumor cells may cause an inflammatory response resulting in marked release of the pancreatic enzymes normally produced in these tissues into the blood stream. This hypothesis seems to be confirmed by some studies which have documented hyperamylasemia in nonmalignant pulmonary disorders including pulmonary infarction, “heroin lung” and pneumonia [38, 41, 42] as well as non-malignant ovarian disease [43]. Some Authors have postulated that, in patients with dyslipidemia, particularly hypertriglyceridemia but also hypercholesterolemia or both conditions, there may be an accumulation of fat inside the pancreatic acinar cell, disturbing exocytosis [44]. In liver diseases, hyperenzymemia may be secondary to pancreatic acinar cell damage [21, 45, 46, 47, 48, 49, 50, 51] since hepatitis B [52, 53] or C [54, 55] viruses may be detected in the pancreas, to impaired clearance of the pancreatic enzymes by the liver reticulo-endothelial system in advanced chronic liver diseases or cirrhosis or to drugs used to clear the virus [56]. Serum pancreatic hyperenzymemia may be secondary to impaired renal clearance related to renal diseases, inflammatory [57, 58, 59, 60] or neoplastic [61, 62, 63, 64, 65, 66, 67, 68] (Figure 1). In postoperative patients, the reason for increased serum levels of pancreatic enzymes may be due to a decreased rate of excretion into the urine, rather than direct pancreatic cellular damage, at least in cardiovascular surgery [69, 70]. In patients who have undergone hepatic resection, hyperamylasemia is probably caused by portal congestion [71] or by a Pringle maneuver used during hepatectomy [72]. However, we cannot exclude the fact that the increase in serum pancreatic enzymes may also be directly associated with hepatic resection and a reduced clearance of pancreatic enzymes by the liver reticulo-endothelial system, as postulated for advanced liver diseases. However, an increase in the serum levels of pancreatic enzymes may be due to the presence of macronzymes, macroamylase or macrolipase. Macronzymes [73, 74] are enzymes of high molecular mass which are formed in serum by self-polymerization or by association with other proteins. Because of their high molecular mass, they escape normal glomerular filtration and accumulate in plasma, with a longer serum half-life. In the majority of cases, the nature of these macronzymes is an association with an immunoglobulin (IgG or IgA). Most of the serum enzymes routinely measured in the clinical laboratory have been described in lipid aggregates or as exhibiting immunoglobulin macroforms [75, 76, 77, 78]. Macroamylase is an enzymatically active
complex, formed by both salivary and pancreatic amylases bound to immunoglobulin type A (IgA) [79, 80, 81]. The complex can be formed with either kappa or lambda type IgA and is usually filtered very slowly from the blood by the kidney [80, 81]. Macrolipase is a macromolecular form of immunoglobulin-associated lipase (IgG and IgA) [82, 83], but other reports demonstrate an association with alpha_2_-macroglobulin [84].

Familial asymptomatic hyperamylasemia is a condition described in family members spanning more than one generation with a pattern of inheritance consistent with an autosomal dominant condition [85]. The causes of this rare condition are still obscure, through a genetic defect is obviously postulated.

Possible Causes of Pancreatic Hyper-enzymemia

In the presence of pancreatic hyper-enzymemia, we should consider the symptoms reported by the patients (Figure 2). In the presence of pancreatic-type pain or other less frequent symptoms specific for pancreatic diseases (i.e. maldigestion or recent onset of diabetes), we should consider the diagnosis of pancreatitis (acute, chronic) or pancreatic cancer (intraductal mucin-producing, adenocarcinoma, others), but other possible abdominal diseases (gastro-intestinal, biliary, ovarian or vascular) cannot be excluded (Table 1). In the presence of aspecific symptoms, we should investigate the clinical history of patients in order to evaluate a possible association between the increase of serum pancreatic enzymes and a systemic disease (Table 2). In asymptomatic patients, a familial history of pancreatic diseases and hyperamylasemia is necessary in order to decide upon the diagnostic work up. In the presence of familial inflammatory or neoplastic pancreatic diseases - particularly if they are present in first degree relatives and there are additional risk factors - an in-depth investigation is suggested. On the contrary, the presence of high levels of serum pancreatic enzymes in asymptomatic relatives presupposes a probable diagnosis of familial hyper-enzymemia.

A previous diagnosis of inflammatory pancreatic disease involves careful research of the cause of the pancreatitis, particularly a dysfunction of the sphincter of Oddi or a possible recurrence of biliary microlithiasis. It
is possible that pancreatic hyperenzymemia is a result of difficulty in discharging pancreatic juice throughout the sphincter of Oddi secondary to sphincter of Oddi dysfunction, biliary lithiasis or microlithiasis, not enough to trigger a new episode of pancreatitis but sufficient to determine a “leakage” phenomenon, with increased release of pancreatic enzymes into the blood.

In patients with a previous diagnosis of pancreatic tumor, we should investigate the possible involvement of the pancreatic duct by the tumor, instrumentally re-evaluate the pancreas after surgery to exclude the

Table 1. Possible abdominal pathology associated with abdominal pain and pancreatic hyperenzymemia.

<table>
<thead>
<tr>
<th>Gut</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary lithiasis</td>
<td>[13, 89]</td>
</tr>
<tr>
<td>Peptic ulcer</td>
<td>[90, 91, 92, 93, 94, 95]</td>
</tr>
<tr>
<td>Acute cholecystitis</td>
<td>[96, 97, 98]</td>
</tr>
<tr>
<td>Acute abdomen</td>
<td>[99, 100, 101]</td>
</tr>
<tr>
<td>Intestinal obstruction</td>
<td>[13, 102, 103]</td>
</tr>
<tr>
<td>Obstruction of the afferent intestinal loop after gastrectomy</td>
<td>[104]</td>
</tr>
<tr>
<td>Periampullar diverticulum</td>
<td>[88, 105, 106]</td>
</tr>
<tr>
<td>Intestinal infarction</td>
<td>[107]</td>
</tr>
<tr>
<td>Inflammatory bowel diseases</td>
<td>[67, 108, 109, 110, 111, 112, 113]</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>[114, 115]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genital tract</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian tumours</td>
<td>[31, 33, 36, 37, 116, 117, 118, 119, 120]</td>
</tr>
<tr>
<td>Acute salpingitis</td>
<td>[43, 121]</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>[122, 123, 124]</td>
</tr>
<tr>
<td>Ectopic pregnancy</td>
<td>[125, 126, 127, 128]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vascular</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombosis</td>
<td>[129, 130]</td>
</tr>
<tr>
<td>Dissecting aortic aneurysm</td>
<td>[131]</td>
</tr>
<tr>
<td>Ruptured abdominal aortic aneurysm</td>
<td>[132, 133, 134]</td>
</tr>
<tr>
<td>Abdominal trauma</td>
<td>[97, 136, 137, 138]</td>
</tr>
</tbody>
</table>

Table 2. Possible systemic diseases associated with pancreatic hyperenzymemia.

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS [139, 140, 141, 142]</td>
</tr>
<tr>
<td>Trauma [135, 143, 144, 145, 146, 147, 148]</td>
</tr>
<tr>
<td>Acidemia [149]</td>
</tr>
<tr>
<td>Shock [143, 150]</td>
</tr>
<tr>
<td>Diabetic chetoacidosis [27, 29, 151, 152, 153, 154, 155]</td>
</tr>
<tr>
<td>Critically ill patients [156, 1157]</td>
</tr>
<tr>
<td>Intracranial bleeding [158]</td>
</tr>
<tr>
<td>Eating disorders [159, 160, 161, 162, 163, 164, 165, 166, 167]</td>
</tr>
<tr>
<td>Acute porphyria [168, 169]</td>
</tr>
<tr>
<td>LES [170, 171]</td>
</tr>
<tr>
<td>Rheumatic diseases [172]</td>
</tr>
<tr>
<td>Chronic liver diseases (virus C and B) [21, 45, 173, 174, 175, 176]</td>
</tr>
<tr>
<td>Hepatocellular carcinoma [177]</td>
</tr>
<tr>
<td>Toxic epidermal necrolysis [178]</td>
</tr>
<tr>
<td>Leptospirosis [179, 180, 181]</td>
</tr>
<tr>
<td>Renal diseases [57, 58, 59, 182, 183, 184]</td>
</tr>
<tr>
<td>Sarcoidosis [185]</td>
</tr>
<tr>
<td>Pheochromocytoma [186, 187]</td>
</tr>
<tr>
<td>Multiple myeloma [64, 188, 189, 190]</td>
</tr>
<tr>
<td>Retroperitoneal plasmacytoma [191]</td>
</tr>
<tr>
<td>Hematologic malignancies [66, 192]</td>
</tr>
<tr>
<td>Colon cancer [39]</td>
</tr>
<tr>
<td>Renal cell carcinoma [63]</td>
</tr>
<tr>
<td>Breast carcinoma [193]</td>
</tr>
<tr>
<td>Lung tumours [30, 32, 34, 35, 38, 39, 40, 194, 195]</td>
</tr>
</tbody>
</table>
Table 4. Type of surgery associated with pancreatic hyperenzymemia.

<table>
<thead>
<tr>
<th>Type of surgery</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic</td>
<td>[13, 206, 207]</td>
</tr>
<tr>
<td>Abdominal</td>
<td>[71, 72, 208, 209, 210, 211]</td>
</tr>
<tr>
<td>Hepatic</td>
<td>[212]</td>
</tr>
<tr>
<td>Biliary</td>
<td>[70, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225]</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>[226]</td>
</tr>
<tr>
<td>Liver transplantation</td>
<td>[69, 227, 228]</td>
</tr>
<tr>
<td>Post-ERCP</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Drugs associated with pancreatic hyperenzymemia.

<table>
<thead>
<tr>
<th>Drug</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paracetamol</td>
<td>[196]</td>
</tr>
<tr>
<td>Steroids</td>
<td>[197]</td>
</tr>
<tr>
<td>Azathioprine</td>
<td>[108, 198]</td>
</tr>
<tr>
<td>Ephedrine</td>
<td>[199]</td>
</tr>
<tr>
<td>Ritodrine</td>
<td>[199]</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>[200]</td>
</tr>
<tr>
<td>Roxithromycin</td>
<td>[201]</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>[202]</td>
</tr>
<tr>
<td>Clozapine</td>
<td>[203]</td>
</tr>
<tr>
<td>Pentamidine</td>
<td>[204]</td>
</tr>
<tr>
<td>Didanosine</td>
<td>[205]</td>
</tr>
</tbody>
</table>

possibility of a relapse of the neoplasia (particularly intraductal mucin-producing tumors) or difficulty in discharging pancreatic juice through the anastomosis.

In patients with asymptomatic hyperenzymemia without previous episodes of pancreatitis or a diagnosis of pancreatic cancer, we should carefully investigate possible associated diseases, particularly celiac disease but also B or C virus hepatitis. Pancreatic hyperenzymemia may also be observed in patients with dyslipidemia, and similarly to what has been observed in hepatic steatosis, those with pluri-metabolic syndrome are probably the high risk patients. Elevated serum pancreatic enzymes have been reported in patients treated with drugs (Table 3) and an accurate drug history should be taken.

Hyperenzymemia may be also detected in patients who underwent surgery, obviously pancreatic, but also abdominal or cardiac (Table 4).

Diagnostic Approach to Pancreatic Hyperenzymemia

The detection of symptomatic or asymptomatic pancreatic hyperenzymemia presupposes researching the possible cause, pancreatic or extra-pancreatic (Figure 3). From this point of view, it is important to evaluate the symptoms associated with biochemical alterations.

Clinically, in patients with pancreatic-type symptoms, an inflammatory or neoplastic disease of the pancreas should be suspected. Therefore, the patients should undergo abdominal ultrasonography (US) and/or computed tomography (CT), and biochemical tests to diagnose pancreatitis or pancreatic cancer. Magnetic resonance (MR) may be postponed mainly because the stimulation of the pancreatic fluid secretion by secretin in an altered pancreas may aggravate pancreatic damage in the presence of inflammation. Furthermore, since in the acute phase of pancreatitis, exocrine secretion is impaired in animals [86] and in humans [87], magnetic resonance cholangiopancreatography (MRCP) with secretin stimulation may give incorrect information about pancreatic duct morphology and sphincter of Oddi function.

In asymptomatic patients, those with a documented familial history of pancreatic hyperenzymemia or with a recognized cause of serum alterations (Figure 1, Tables 1, 2, 3) should be evaluated with a first level instrumental examination, i.e. abdominal US. In the absence of these findings or in the presence of pancreatic US abnormalities, a second level instrumental evaluation of the pancreas is suggested.

Despite the high cost, MRCP with secretin stimulation is probably the best approach, because it gives morphologic and functional information. The probability of finding a pancreatic cause for the biochemical alteration at MR is high since, in a previous study, pancreatic ductal morphology was
abnormal in more than 50% of patients with asymptomatic hyperamylasemia and hyperlipasemia [88].

In conclusion, several conditions other than pancreatitis can be the cause for elevated serum amylase and/or lipase levels in patients both with and without abdominal pain, such as altered secretion and clearance of pancreatic enzymes, detection of pancreatic enzymes of non-pancreatic origin or painless pancreatic diseases. In the presence of pancreatic hyperenzymemia, a careful evaluation of the clinical history, drug use and symptoms are important in deciding the diagnostic work-up. In patients without evident reasons for biochemical alteration, the possible causes should be carefully investigated. The first step is certainly to eliminate the possibility of the existence of pancreatic disease and MRCP with secretin stimulation probably represents the best approach to the problem, since it gives morphological and functional information about the pancreatic gland which has been found to be abnormal in a high percentage of patients having elevated serum pancreatic enzymes. The next diagnostic step includes all the examinations required to identify the possible causes of pancreatic hyperenzymemia. A definitive diagnosis of the cause of hyperenzymemia is strongly suggested in order to avoid unnecessary biochemical and instrumental investigations over time and to set the patient’s mind at ease.

Keywords
Amylases /metabolism; Cholangiopancreatography, Endoscopic Retrograde; Diagnosis; Hyperamylasemia /etiology; Lipase /metabolism; Magnetic Resonance Imaging

Correspondence
Luca Frulloni
Cattedra di Gastroenterologia
Dipartimento di Scienze Chirurgiche e Gastroenterologiche
Policlinico GB Rossi
Piazzale LA Scuro, 10
37134 Verona
Italy
Phone: +39-045.807.4437
Fax: +39-045.820.5584
E-mail: luca.frulloni@univr.it

References

34. Roberts I, Chopra S, Warshaw AL. Carcinoma of the lung with marked hyperamylasemia and elevated serum calcitonin. Am J Gastroenterol 1982; 77:43-4. [PMID 6175207]

hyperlipasemia attributable to a novel type of
11106339]
85. Gullo L. Familial pancreatic hyperenzymemia.
Pancreas 2000; 20:158-60. [PMID 10707931]
86. Czako L, Yamamoto M, Otsuki M. Exocrine
pancreatic function in rats after acute pancreatitis.
87. Andersson E, Andersson R. Exocrine
insufficiency in acute pancreatitis. Scand J
88. Mortele KJ, Wiesner W, Zou KH, Ros PR,
Silverman SG. Asymptomatic nonspecific serum
hyperamylasemia and hyperlipasemia: spectrum of
MRCP findings and clinical implications. Abdom
89. Kurzweil SM, Shapiro MJ, Andrus CH, Wittgen
CM, Herrmann VM, Kaminski DL. A pattern of
serum amylase concentration in the initial 24 hours
after perforation of duodenal ulcers. J R Coll Surg
Edinb 1974; 19:370-3. [PMID 4443965]
90. Rogers FA. Elevated serum amylase: a review
and an analysis of findings in 1,000 cases of perforated
91. Hagan JC, Schoen AM, McGeachin RL. Serum
[PMID 14902753]
92. Wapshaw SH. Significance of raised serum-
enzyme levels in perforated peptic ulcer. Br Med J
1951; 4713:995-7. [PMID 14830827]
93. Orlando R 3rd, Gleason E, Dreznar AD. Acute
acalculous cholecystitis in the critically ill patient. Am
94. Owen CC, Jain R. Acute acalculous cholecystitis.
Curr Treat Options Gastroenterol 2005; 8:99-104.
[PMID 15769430]
95. Linos DA, Van Heerden JA. Abdominal pain,
gallstones, and hyperamylasemia--a clinical dilemma.
Minn Med 1981; 64:401-3, 396. [PMID 6167847]
96. Pace BW, Bank S, Wise L, Burson LC, Borrero
E. Amylase isoenzymes in the acute abdomen: an
adjunct in those patients with elevated total amylase.
Am J Gastroenterol 1985; 80:898-901. [PMID
2413755]
97. Castiglione F, Del Vecchio Blanco G, Rispo A,
Mazzacca G. Prevention of pancreatitis by weekly
amylase assay in patients with Crohn's disease treated
with azathioprine. Am J Gastroenterol 2000; 95:2394-
5. [PMID 11007256]
M, Napolitano B. Hyperamylasemia in inflammatory
[PMID 2466072]
99. Tromm A, Holtmann B, Huppe D, Kuntz HD,
Schwegler U, May B. Hyperamylasemia, hyperlipasemia
and acute pancreatitis in chronic inflammatory bowel
100. Swensson EE, King ME, Malekpour A, Maull KI.
Serum amylase isoenzyme alterations in acute abdominal
[PMID 2580465]
101. Foucault P, Drosdowsky MA. Differential
diagnosis of an hyperamylasemia in an acute
[PMID 1705873]
102. Byrne JJ, Boyd TF. Hyperamylasemia in
intestinal obstruction and its relationship to
14017502]
103. Merine D, Fishman EK, Jones B, Siegelman SS.
Enteroenteric intussusception: CT findings in nine
[PMID 3495136]
104. Mithofer K, Warshaw AL. Recurrent acute
pancreatitis caused by afferent loop stricture after
8624206]
105. Castilho Netto JM, Speranzini MB. Ampullary
duodenal diverticulum and cholangitis. Sao Paulo Med
J 2003; 121:173-5. [PMID 14595511]
106. Black PR, Welch KJ, Eraklis AJ. Juxtapancreatic
intestinal duplications with pancreatic ductal
communication: a cause of pancreatitis and recurrent
21:257-61. [PMID 3958888]
107. Cremoni LG, Mantellini E. An association of
acute pancreatitis and intestinal infarct due to superior
80:505-6. [PMID 2473424]
108. Castiglione F, Del Vecchio Blanco G, Rispo A,
Mazzacca G. Prevention of pancreatitis by weekly
amylase assay in patients with Crohn's disease treated
with azathioprine. Am J Gastroenterol 2000; 95:2394-
5. [PMID 11007256]

119. O' Riordan T, Gaffney E, Tormey V, Daly P. Hyperamylasemia associated with progression of a serous surface papillary carcinoma. Gynecol Oncol 1990; 36:432-4. [PMID 1690681]

120. Juang CM, Yeng MS, Twu NF, Chao GC. Hyperamylasemia associated with endometroid carcinoma of the ovary. Zhonghua Yi Xue Za Zhi (Taipei) 2000; 63:710-3. [PMID 11037648]

166. Metzger ED, Levine JM, McCardle CR, Wolfe BE, Jimerson DC. Salivary gland enlargement and

228. Testoni PA, Bagnolo F, Caporuscio S, Lella F. Serum amylase measured four hours after endoscopic sphincterotomy is a reliable predictor of postprocedure pancreatitis. Am J Gastroenterol 1999; 94:1235-41. [PMID 10235200]