Wonder drug - an insect and fungus relationship
(Hepialus - Cordyceps) through biotechnological approaches

Siddique SS, Arif M, Babu R, Shamim M
Department of Zoology, H.N.B. Govt P.G. College, Khatima Udham Singh Nagar, Uttarakhand, India.

Corresponding Author: shahidsami1@yahoo.com

Abstract

Yartsa gumba or dbyar-rtswa-dgun-bu is Tibetan name of an entomo-fungal combination between *Hepialus armoricans* (Lepidoptera; Hepialidae) larva and its parasitizing fungus *Cordyceps sinensis* (Berk), which is traditionally used in Tibetan and Chinese System of Medicine (TCM). This medicinal entomo-fungal product is known in Chinese as Dong Chong Xia Cao (winter worm and summer plant or grass in summer and worm in winter), Yarchagumba means herbs of life in Nepal and Tochukaso in Japan. It is also known as Caterpillar mushroom and Caterpillar fungus, and in India it is commonly known as Keera Ghas. This entomo-fungal combination is known to be used for many centuries as tonic, medicine and aphrodisiac and in religious ceremonies in China, Indonesia and Upper Himalayas. Yarsa gumba is also known as the “Himalayan Viagra” or “Himalayan Gold” for its high medicinal and commercial value. It is mainly used as a treatment for impotency in many countries. Numerous scientific studies reveal that it has properties of antibiotic in it. *Cordyceps sinensis* is used for lung and respiratory infection, pain, sciatica and backache. It also provides vitality and increases physical stamina of the body. Yarsa gumba is used by the Chinese to cure chronic hepatitis B and immune function disorder such as dysfunctioning of liver. Approximately 5 grams was stuffed into the stomach of a duck that was roasted until well cooked, then the Cordyceps was removed and the duck was slowly eaten, twice daily, over a period of 8-10 days.

Keywords: Cordyceps; Mass production; Yartsa gumba; Culture medium.

Introduction

Yartsa gumba or dbyar-rtswa-dgun-bu is Tibetan name of an entomo-fungal combination between *Hepialus armoricans* Oberthur (Lepidoptera; Hepialidae) larva and its parasitizing fungus *Cordyceps sinensis* (Berk), which is traditionally used in Tibetan and Chinese System of Medicine (TCM). This medicinal entomo-fungal product is known in Chinese as Dong Chong Xia Cao (winter worm and summer plant or grass in summer and worm in winter), Yartsa Goenbub in Bhutan, Yarchagumba means herbs of life in Nepal and Tochukaso in Japan. It is also known as Caterpillar mushroom, Caterpillar fungus, vegetable wasp, plant worm, vegetable caterpillar (Cooke, 1892) and in India, it is commonly known as Keera Ghas. This entomo-fungal combination is known to be used for many centuries as tonic, medicine and aphrodisiac and in religious ceremonies in China, Indonesia and Upper Himalayas. The medicinal importance of this combination is due to a fungus viz., *C. sinensis* parasitizing the host caterpillars i.e. *H. armoricans* (Arif and Kumar, 2003).

Materials and Methods

Live specimens of *Cordyceps* were carefully collected from their natural habitat in the high altitude region (Laspa area) at an altitude of 13000 feet during May and June 2004. The specimens were wrapped inside the moss plants and then packed in the ice cubes. The specimens were washed with tap water to remove the adhering dust particles on it. The stroma was washed with sterile distilled water, surface dried by pressing between sterilized filter paper. In order to propagate the mycelium in vitro, tissues were taken from the different parts of the Cordyceps body like spores, stalk tissue and tissue from stroma region. These tissues were excised from the Cordyceps body with the help of a sterilized scalpel inside a laminar flow and cultured in to the various culture media. Eight different types of media were prepared to get the pure culture of the fungus. Culture media utilized for pure mycelium culture were Potato Dextrose Agar (PDA), Casein Hydrolysate Dextrose Agar (CHDA), Beef Extract Dextrose Agar (BEDA), Soybean Seed Extract Dextrose Agar (SEDA), Rice Extract Dextrose Agar (REDA) and Black Soybean Seed Extract Dextrose Agar (BSED). The chemical composition of each culture media is given in Table 1. pH of media varied from 4.5 to 6.5. The cultures were incubated at the various range of temperature (5 to 25°C) inside the incubator.
Results
Observations were taken for the mycelium spread on the different media. Results are shown in Fig. 1. It was observed that the tissue taken from the stroma region of the Cordyceps is the most suitable inoculum to get the mycelia run in the culture media. However, spores and stalk tissue did not response at all. Out of the 8 culture media the mycelial growth was successful on 5 culture media viz., PDA, BEDA, CHDA, SEDA and REDA. During the experiment it was also observed that the optimum growth of the Cordyceps occurred under low temperature condition between 5 to 15°C and more acidic pH 5-5.5 (Fig. 4). However, sclerosis was observed in the mycelium obtained on all the types of the culture media. With the result, mycelia having numerous spores were observed under the compound microscope (Fig. 2 and 3).

Discussion
The availability of Yartsa gumba is scanty in nature and it involves a high labour cost to collect from its natural habitat as wild harvest. Under such circumstances, laboratory culture of this fungus is the only solution to fulfill the demand of such a high value medicinal and highly priced fungus. Hence, the standardization of laboratory culture technique of present investigation of the fungus needs to be the prime importance. Thus, laboratory production of the mycelium of Cordyceps will definitely prove a great success in preparation of various products from the dried mycelium which has numerous potential therapeutic applications.

In the early 1970’s, Chinese government promoted cultivation of over 200 species of wild Cordyceps, looking for the best type, finally isolated and selected C. sinensis, after conducting many studies using scientific standards to verify the safety and better medicinal properties of C. sinensis. The product of Chinese strain is of artificial medium and is easy for the growers. The downside of this method is that the grain content is usually greater than the mycelium content. However, since this method the extra cellular compounds which were exuded by the fungus during the growth period are discarded with the spent broth. Thus causes a major loss of bioactive compounds as many of the active ingredients are extra cellular in nature and are found only in small concentrations in the mycelium.

USA and Japan are practicing the solid-substrate cultivation method. In this system, the mycelium is grown in plastic bags or glass jars containing sterilized medium, which contain some type of cereal grains viz., rice, wheat or rye. After some period of growth, the mycelium is harvested by straining out from the liquid broth and drying, after which it can be used for further processing. In this method the extra cellular compounds, which were exuded by the fungus during the growth period are discarded with the spent broth. Thus a major loss of bioactive compounds as many of the active ingredients are extra cellular in nature and are found only in small concentrations in the mycelium.

The present author suggest following steps for the benefit of the local people.
♦ Screening natural population of Cordyceps for its constituent.
♦ To develop a protocol for growing Indian strain in artificial medium.
♦ To compare the chemical composition of in vitro culture with naturally occurring Cordyceps for its quality.

Since wild Cordyceps is rare and difficult to harvest due to its growing in harsh environment, location and season specific efforts have been made to cultivate Cordyceps mycelia for commercial application. Commercial cultivation of Cordyceps began in the early 1980’s making the herb readily available for clinical research. The active ingredients of CS-4 strain of C. sinensis are quite different (Zhao et al., 2002; Zhou et al., 1990 and Li et al., 2001).

Liquid culture of C. sinensis is a common practice in China. The fermentation in which the organism is introduced into a tank of sterilized liquid medium, which has been formulated to provide all the necessary nutritional components for rapid growth of the mycelium. After the growth in the liquid medium, the mycelium is harvested by straining out from the liquid broth and drying, after which it can be used for further processing. In this method the extra cellular compounds, which were exuded by the fungus during the growth period are discarded with the spent broth. Thus a major loss of bioactive compounds as many of the active ingredients are extra cellular in nature and are found only in small concentrations in the mycelium.
a new hybrid *Cordyceps* after cross breeding by advanced techniques, the wild strain of *C. sinensis* occurring at an altitude of 21000 feet on the snow covered peaks of Himalayas for the quality of product and *C. sobolifera* occurring in the low bamboo forest of China. Continuous efforts have been made to increase concentration of HEA and cordycepin, the compound much in demand worldwide. The improved techniques available to the growers have resulted in an increase of 1500% higher HEA and cordycepin yield. Further, the products are pure and without contamination of soil particles.

Zhou et al. (1998) and Hobbs (1986) reported that genus *Cordyceps* produce some potent antibiotics. Further, these authors doubted whether the species of genus *Cordyceps* are single organism or they are symbiotic colonies of more than one organism. They doubt that today's *C. sinensis* will one day be known as a fungal/bacterial symbiosis. However, DNA sequencing is inconclusive in this regard as the DNA sequence tends to change with time, as if the fungus were incorporating some of the insect DNA into its own DNA code for the initiation of its fruiting body form, then loosing the insect DNA when it goes back into its mycelial form, microscopic examination of growing *C. sinensis* mycelium reveals some very interesting morphology including the concurrent anamorphous of filamentous mycelium and rapidly moving single celled yeast like morphological form. This has been observed in other *Cordyceps* spp. as well as in *C. sobolifera*.

Thus, the culture method itself has an effect on the quality of the resultant *Cordyceps* product. Besides methodology, the next factor in the production of particular secondary metabolized or target medicinal compounds is dependant on the nature and composition of the substrate itself. Further, a substrate that favours rapid and strong growth of the mycelium would be an ideal substrate for use (Zhang et al., 1992). The culture medium for the development of *C. sinensis* is in progress (Fig. 1). The chemical analysis of initial products *in vitro* is in progress (Table 1). Further studies are in progress.

Table 1. Chemical composition of different culture media.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Media (g/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PDA</td>
</tr>
<tr>
<td>Peptone</td>
<td>10</td>
</tr>
<tr>
<td>Dextrose</td>
<td>40</td>
</tr>
<tr>
<td>Casein Hydrolysates</td>
<td>-</td>
</tr>
<tr>
<td>Beef extract</td>
<td>-</td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>-</td>
</tr>
<tr>
<td>Mushroom powder</td>
<td>-</td>
</tr>
<tr>
<td>Soya bean powder</td>
<td>-</td>
</tr>
<tr>
<td>Rice powder</td>
<td>-</td>
</tr>
<tr>
<td>Black Soya powder</td>
<td>-</td>
</tr>
<tr>
<td>Soya bean powder</td>
<td>-</td>
</tr>
<tr>
<td>Agar powder</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig 1. Successful *in vitro* culture of *Cordyceps sinensis* on artificial medium under laboratory conditions.

Fig 2. An ascus showing ascospore (T.S.).
Fig 3. T.S. of stroma showing peritheca attached.

Interaction of pH and temperature on growth of *Cordyceps sinensis*

Fig 4. Interaction of pH and temperature on growth of *Cordyceps sinensis*.
References

